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Summary

%We consider in detail probit and loqistic renres ion nodels

when some of the predictors are measured with error. For normal

measurement errors, the functional and structural ,naximun

likelihood estimates (MLE) are consilered; in the functional case

the MLE is not generally consistent. Non-normality in the

structural case is also considered. ry an example and a

simulation, we show that if the measurement error is larqe, the

usual estimate of the orobability of the event in question can be

substantially in error, especially for hiqh risk qroaps.,

Some key words: Probit regression; Loqistic regression;

Functional models; Structural models; Measurement errors.
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I. Itroduction

The Framinghca , Heart Study (Gordon & Fannel, 1968; Truett,

Cornfield & Kannel, 1967) is an on-goinq prospective study of the

development of cardiovascular risease. This study has been the

basis for a considerable amount of epideminioogic research, much

of it through the use of logistic regresson. Por exa:mople, there

has been considerable emphasis on analyzin4 the probabilitv of

developing coronary heart disease (CHD). In this instance, the

response is binary:

Y = 1 means persons develops CHD (1.1)

= 0 means person does not develop CHT).

Many of the analyses have attempted to relate baseline risk

factors to the orobability of developinq CHD); these risk factors

include systolic and diastolic blood pressure, serum cholesterol,

history of smoking, etc. Ordinarily, at some point in the

analysis, multiple logistic regression is employed.

It is well-known that many of the baseline risk factors are

measured with error; systolic blood pressure is a good example

(Rosner & Polk, 1979). One of us was asked by a number of

investigators and at least one referee whether such measurement

errors could substantially effect the logistic regression

estimates and, if so, what could be done to correct for the

measurement error. The present study is an outqrowth of these

questions, although there are many important practical facets of

the problem yet to be investiqated.
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In an interestinq paper, %ichalek an,- Trinathi (1980)

discuss the effect of measurement error on orlinary logistic

regression; see also Ahmed and ,achenhruch (1975). Michalek and

Tripathi conclude that ordinary lo.i';tic r'-qression will not he

too badly disturbed by :wasurenent error as lonq as such error is

moderate. We feel that our methods, in providing alternatives to

ordinary logistic regression, will help the experimenter to get a

more precise understanding of t!he effect of the measurement

errors, especially if they are severe.

Our model is as follows. We have a sample of N persons from

a particular population, e.g., males aqed 45-54. The ith person

in the sample is assumed to have a vector of baseline risk

factors x., with the prob ability of developing disease (CHD)

given by

P(Yi = i ) = G(x )' i 1, ... , N, (1.2)

where G(.) is a known distribution function such as

G(a) (1 + exp(a)} -  (Logistic Regression)

6(a) = €(a), (Prohit Reqression),

where 0(.) is the standard normal distribution function. We

will return to probit regression later, but it is important to

remember that probit and loqistic regression usually give similar

results (Halperin, Wu & Gordon, 1979; Gordon, et al., 1977).



We will partition the risk factors x. into components

observed without and with error, so that

= (W' z) (1.3)

-o

In (1.3), {w} can be observed at nearly exact levels; age and

sex are examples. In (1.3), the Izil are measured with

nontrivial error and cannot be observed; rather we only observe

Z. = z. + u.. (1.4)-. - -i

To begin the discussion we are goinq to assume that the Ifui} are

independently and normally :Aistributed with mean zero and

covariance matrix E M assumed nonsiniular.

When the risk factors {z.} observed with error are assumed

to be constants, the model is usually called the functional model

(Kendall & Stuart, 1979). In thi:- instance, a and the N values

{zi }are unknown parameters, and the number of these unknown

parameters increases with the sample size N, so that classical

maximum likelihood theory does not apply. In fact, in the next

section we show that in a very simple logistic regression model,

the functional maximum likelihood estimate (MLF) of is not

consistent when EM is known. This i.s in contrast to the

functional MLE for linear regression, which is generally

consistent.

mum"



In Section 3 we stur]y the more tractanle structural mo1el,

wherein the {zi are themselves indeporident with common

distribution function F, which we will also initially suppose is

that of a normal randoin vector with nean P' and covariance E

In effect, we study a conditional likelihood, replacinq (1.2) by

P(Yi = 1 wi'Zi).

In Section 4, the non-normal case is discussed. In Section

5, we present a small %ionte-Carlo study. fn Section 6, we

analyze the effect of measuremient error on oredicting the

probability of CHD on the basis of svstolic blood pressure.

2. The Functinnal Case

"Consiler loqistic regression throuh the origin,

P(Yi = lici) = {l + exP(0ci)}- , (2.1)

where a and {ci} are scalars. rVecause of measurement error, we

observe

C. = c.i + vi, (2.?)

where the errors {vi) are normally distributedl with mean zero
2 2

and variance 0 2  (0 < a < -). For purposes of this example, we

2.will assume 0M is known to the inveqtigator.

ii
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In the circumstance that the measuremrent error variance is

known, for linear regression the functional errors-in-variables

maximum likelihood estimate of a is generally cons;istent and

asymptotically normally distrihuted. We now onitline why this

happy circumstance does not >arry over to logistic regression.

The maximum likelihood estimator (NLER) of ai for the
2

functional model (2.1)-(2.2) with a known maximizes

N
,[Y.logc(aci) + (l-Yi)loq{ l-G(aci)(2

i=l 1 1 2

-(
2 0M) - (Ci-ci,

i=l

where

G(t) = {l + exp(t)1

is the logistic distribution function. Fo r this functional

model, the parameters are {aO, (ci)). For qiven i, the estimates

of {cij satisfy

2^
cci(a) = Ci - acM  -ac Yi1, (2.4)

i = 1, ... , N.

The MLE a0 satisfies (2.4) and

-lN
N ci(a 0 )[G{ 0 ci(c 0 )} - Yi] = 0. (2.5)

i=l

If the MILE exists and] is unique, an' if



N 1/2 OL 0 - L0

is asymptotically normally listrihute! with mean zero and

oositive, inite asymptotic varianc , then one can prove (see

Appendix) that

-1 Ncj )[a c(z)-
N c ^. (2.6)

i=l

In (2.6), ci (a 0) satisfies (2.4). It turns out that (2.6) does

not hold even in the followinq simnle case: take c. = ± 0.5 (+I

if i is od1, - otherwise) and a 2 = 1 (we numerical
M

interqration to check this).

The precedinq arquient shows that even in the simolest of

cases, the functional loqistic errors-in-variahles MLE will not

be unique and asymptotically normal in th,- lsiial /N sense. We

believe this phenomenon carries over t, other forms for the

distribution function such as nrohit reqression. Tn fact, for

the model (2.1) - (2.2) with 02 known, we have heen unahe to

construct any consistent and asymptotically normal estimate of

a 0•

3. Structural Case: N-rma Distribution

The model is qiven by (1.2) - (1.4), but in the

structural case we eliminate the nuisance parameters {zji by

assuminq they are independent anI normally distributed with mean

vector P and covariance matrix E . The error vectors fuI are
zz -

I}
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also asiumned to be inlependlent (of ono another and of

zi}) normal ri,(lom vectors with mean 0l and covariance EM. For

the moment we shall asue that P , Y and F are known; wez M

discuss more realistic cas.es near the end of the section. For a

qiven qeneral distrihtion function ( in (1.2), we denote the

marginal likelihood of the observed diata by

L( '-01'B-02' M 'Hz ' z

Defininq the dimension of 0 to be p, this marginal likelihood,

which can more intuitively he written as the product of the

conditional likelihoods for Y. qiven Zi, is oronortional to

L(r, _01, 02' Mz ,F Zz )

N Y (1-Y (3.1)iS

i=l 1

where

S = AIjG(wiS0 1
+ z- 2 )expl-O.5(Zi- z)'M (7i- z)} (3.2)

x exp{- 0.5(z - ) - WzI,-z z

_p_
A1  = (2 ) (I II I) /2 (3.3)

and S. is defined by replacinq G (.) by 1 - G(.) in (3.2).

Detailed calclations show that

K1 4
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1 + A3i j-i1 i- Z\3ijI i+)

ti+ fG{w-_ 1 + (3_2 A2 !02 )  v + '1iJ2)42( r(v)dv, (3.4)

where

(v) = 2n)-6 e xp(- . v

S-1 -1

dIi M -Zi z -z

2i -z z- 'U + Z:-i z.
2-z -i M -1

ATA 2 1 1/2 5)' (. 2  + 0.5diA2-li).

In effect, the calculation of the likelihoo,9 depends only on

being able to evaluate (3.4). This is no easy matter in qeneral

for the loqistic function ((t) = i1 + exp(t)} I  althouq if the

number of variables measured with error i,; small, (3.4) can in

principle be evaluate] by numerical inteir-tion. For nrobit

regression, (3.4) can be evaluated ex;licitly; in fact,

tit , aw 1 + diA2 _2)(1 + _ 2 A2 _ 1/2 } (3.5)

Since loqistic and Probit reqression qenerally qive similar

estimates of event probabilities (Halnerin, Wu & c1ordon, 1979),

in the rest of the paper we confine our discussion to probit

regression.

In most instances, the nuisance parameters

z- zE and EM will be unknown. Joint estimation of these

MIJ
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par3d.qEtrs ani -0 thro-qh th' 1 ikI ihool ( 3. 1) may he

computationIallv feasible by such ,1,'iC i; th', E-M alqorithm

(Demnster, Lairl & Rubin, 19'7), -flth, iqh this r(, Iains to he

explored. A simoler -ni reiionabl - - .r,.tive is throuqh the

method of pseudo ,naximi I ikeliho, I .- ti:-, tion (PMLF - see 'onq &

Samaniego, 1981). COmpL tinq PMLF's for t 0 (simo;)lv consists --

findinq estimates of wz' K, and Z ani nl11qinq these estiml-tes

into (3.1). One obvious estiimate For i is

~N
2 = N- I  7., (3.6)-z i =il

while an estimate for E + %I is

z z/ N

( z + 1 -  (- i _  -iz)(-1 - 7 ,' . 3
i--i

One common way to estimate F7 is by r-oplication. For exa-:r!le,

suppose that each variable suhect to ec-ror hut with unknown

covariance is measured twice. Call these replicates

Zil' :i2 Then, in terms of the earlier notation,

Z. = (Zil + Zi2)/2. (3.P)

Since {Z.} have common covariance E, we can compute the

estimates

EM = sample covariance of { (zil - zi2)/2), (3.q)
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E = ( + F ) EM X 3. 10)

"he subst itut ionls (3.6)- (3. 10) anvlec easyv way t-) obtain

con, st a nIavootiCl ynr:;lQtv t~ f say

There are mai-ny ways to estimate the covari nc- --atrix of 0 . r ne

mnethodl is tht , hootstrap (Ff ron, 19-19; lO)RI) ; this cous-in to th-Ie

iackkn i F,- merely rei,' r-s havin-1 en,-)i'h c-):tputor- tim!- to

calcolate a for suff icie..clv many ran Ic'mly Irawn (with

reolacemient) samoles of size 'I from th- coriqinal Iata.

Alternatix'elv, one could- iise tho theo)ry o-f P%11,-'-. miv.en by Gonq

andI Sam-anieqc- (1981) (aictually, one mitinr~z~their

equations (2. ) and (2.6) sliqhtly). Tire rdifficulty with this

appiroach is also COMOutational, 3s it in-vnives takinq derivatives

of the 1(oq, of (1.1) with rcsi-ect to Qf ! 2
-P02f Z" 'M

4. Structural Case: 1qon-'Nh-rni Distribuitions

In the previous section we- havo lnile the assumption that

b-oth the measurement errors iu1and1 the striictural para-ietors-

(z. are nor-mally diistributedl. One mnay wish to take a more

nonparamietric view and not ass-ume that either I{u. or { z. are

normal random variables. We will ouItline a methodl for this

problem, retrictinq ourselves to the Followini1 situation:

The random variable zi subjev-t t,)o mazurement (4.1a)

error is scalar.

The variable subject to measuremennt error is (4.1h)
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remlicated as in (3.2).

Of cours3e, if the comrnon denrity h(z) of the {z. } were

known, conditional likelihood etlit-,,Is co -b ijsed as in the

previous section. !I)wever, ,we are interested in situations for

which h(z) is nnt co-noletely k'nown. i very s;i:)le device is to

assume that h(z) has a simple two-term Eeworth expansion, e.q.,

I/
h(z) = (2TrO 1'2 exIO[-0.9{ (z- .)/O !1 (4.2)-z z

3 4
I - c 3 (z -3z)/6 + c 4 (z - 6z"+ 3)/24},

where P z and a are the :nan and vaLriance of the {z.} and c3z 1

and c4 are stanlar( measares of ske~ns; and kurtosis. Recause

of the replication assuned in (4.1h), these four parameters are

easily estimated, givinq us a samnple hased density with which to

work. The multivariate case can al]-v he hanlled, see Johnson and

'otz (1972).

Given that we either know or can estimatp h(z), the method

of estimation we pronose is based on nonlinear reqression. It

has the appealinq feature that we do not noeel to know the

distribution of the ineasurement errors { i } in lefining the

estimator. In particular, we will turn the nrohlem around and

consider the distribution of zi qiven Yi and wi

{recall, x = (wi, zi)} Let h(zlY., w.) he the conditional

density of zi given Yi and w. This is a comrlicated but easily

computed function of h(z), Yip wi, 801 and 2 )efine the

conditional means of {z.} by1

i I i I I lil I il I I l II II IIII ll' I II iililiI . ....... ... .. . I - .... s " 1
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r'8_0 I  302 v, w.i) = U'z. VY=v 43
'- O01 02' 3 ~ i Z w.) (4. 3)0 2 i -i

In analoqy with nonl inear ri ,r i,'; n, , iilts wg;t 1 and wqt2'

we propose minimizinq

I

Z -{ 7 i , - r F3, 0 2 ,1 w i Y i  (4 . 4 )

+ z {2i, - ( 01 , BO2 P{ , i } i _ %v )

Actually comoutini the esti-tes (o a and is quiteOl 02

feasible because it only relies on nonlin,, ir req resS ion.

Inference based on the estimates is comlex; we have no simple

larqe sample theory anI suqqest that hootstrap methodoloav be

used.

5. A Mlonte-Carlo Stuiv

A simulation stu:y wa, prfcotr- f)r the ,robit model.

Specifically,

P(Y = lizi) = 4(zi - 1), (i = 1, ... , 200)

and we observe

Zi. = z. + u, 1 = 1, 2.

Here {z.} and {ui } were independent normal random variables

with mean zero and variances a2 = a2 = 0.25. Thus, theZ M"

simulation concerns a situation in which the measurement error is



larqe, as is the sa:,ole size 11 = 200. ?\ll 7, ,'rrutations were

performed at the National Institutes )I lieilth Computing Center

usinq the SAS statistical packaoe, spcifically the procedure

NLIN. The experi:vnts wrere r.olijcat,-A 1010 times. The estimates

of Pz' Zz an-I1 E 4ere obtainoI a! lescriho( hy ( 3.6) - (3.10).

In Table 1, we list the means ani mean square errors for the

estimat-,s ()f interceot (= -1.0) 1 :-4ooe (= 1.0) obtained hy the

usual orohit rearession ( dop, i ndi prohit errors-in-

variables (FIV) reqression (L )." This table is a classical

expression of the trade-off between bias; and variance, especially

for the slopes. The usual prohit ,,ar , - badly biased but not

particularly variable. The o)rcbit FTV slo~ms are relatively

unbiased hut quite variable; ov-rall, they result in an

approximately 23% qain over the USnal orobit. reqrosion in terms

of mean square error.

Often liore imoortant than th'- c.tiit of individaul.

parameters is the behavior of the estim~iteI risk or probability

function as a function of the true value of the predictor:

Probit: D(B OP + e lpZ)

Probit EIV: %(O + IEZ).

In Fiq. 1, we plot the averaqe values of the risk or Iprohability

as a function of z, as well as the tru, risk function; these were

averages over the 100 simulations for different values of z,

smoothed by spline interpolation. N te that the probit EIV risk

|.
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function is aporoximately unbiased w.,il- the u!ra orohit risk

function is badly biase1 for those at hiqhest risk.

Tn estimatin1 the risk function, it tiirn. out that there is

not nearly the tra-h-off between bias and variance as there is

for estimitinq inliivi-laal nairam ters. In 'iq. 2, 4ze !lot thje

mean square error functionlP rt- a functfr): Z; 'lain, mean square

errors were calculated for various z ancl then the function was

interpolated by a spline availahle in the SAS procedure GPLOT.

For the high risk cases, the prohit EIV is noticeahly better than

the usual probit risk function. In liq. 3, the ratios of mean

square errors for the probit versus nrobit FIV risk functions are

plotted.

We also experinentol with tho n-anl invar least sqiares

methodoloqv of Section 4. "Ie followe,l the suqqestions of Section

4 with the exception that we a:is1me normality. The resulting

estimates had almost the same scan , iji re rror properties as the

prohit FIV estimators, a fact which we- frouns, both surprisinq and

encouraging.

6. An Fxamtole

To get some idea of the p;)ssihle .I-Fects of measurement

error in a more realistic context, we consi,"ere,l some of the data

from the Framinqham Heart Study (Gordon & K[annel, 196R). The

Framingham Study has followed a sampl, of t.he male and fe nale

population of Framinqham (Massachusetts) hiennially since around

1950 in order to study the development of car liovascular

disease. For purooses of this paper, data used1 here wpre on men
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aqed 45-54, systolic hiood :)reml-,e !beinq tak'. , it exam four.

In-gividuals were called (iis,-tsed ca ;,'; if tley dve loped coronary

heart disease within the six v'<ir interval i- ,r o-anm four.

There were 513 cases, of whom r,6 were eveItually consi(lered to be

diseased cases.

For the averaqe of the two systolic blood pr'>vsures, we

est imated

"2
o = 1.14

^2 ^2
= 0.10 = o.oq o z

M z

Hence, the apparent measurement e-ror was ,Tujite small, with the

usual prohit and probit FIV estimate-, of slope, intercept and

risk beinq only minimnallv different. Nt this :oint, we realized

that we were ion- rinq other sou-rces of vari t which miqhf he

more appropriately class;ified a., "me-,-,a,,nt error.

Specifically, one miqht think of the vriasce of systolic blood.

pressure as

2 + 2 2
s T ME'

where

2 .
a 2 population variance of the "true" systolics

hlood pressures calculated at a fixed time, say

9:00 am,

!t



2
,3 2 -xam tine of day 4 f-ct; wi-hin in,3ividu-I.

there is a diurnal effect for blood pressure,

see Con9t7ock anl57 nd Gould, et al. ( 19P1)

Other effects m, so1 , h:. not,d, e.q., thos

which coul, he qttrihute,1 to nurse or physician

readinq the blood rr'sur,: or to the subject's

physical or pscholoqica] ,i srositjon.

?a "mechanical" measure,-ient error as seen by
ME

differences in two readings.

In the analysis based on (3.6) - (3.1i), we hal

^2 2 2a - o + a
z s

^2 2
oM a ME

when we actually should have had

^2 2
z s

2 _ 2 2
a M T + °ME

We have no estimate of a2 for the Framinham males aqe,- 45-54, so

we decided upon the followinq device. Let 0 PVR< I and define

a-(new) = PVAR aM + (I-PVAR)o
z 7.z

^2 2 "2
OM(new) = (I-PVAR)aM + PVAR a .M z

I
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Basically, PVAR is sonethinq I ik, th., prt')i)rLion of variance +i.e

to diurnal or other unweasulrei effect.

In Fiq. 4, we olot the nrohit- EIV ris'" ftinctions for the

cases PVAR = 0, 0.2, 0.4, ,:or entirq no, moderate and"

substantial time of day ef fects resr.ective1v. What is clear from

Fig. 4 is that, if there is a larqe timo- of day effect, our

estimate (PVAR = 0.0) of the relitionshi, of risk for CHD and

"true" systolic blool presscre coul, he hadlv biased for high

risk patients.

i1

!I
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Aopend ix

Proof of (2.6)

Assume as in Section 2 that

N/2 (a0 - = Op(l). (Al)

Assume also the normalizing conditions

-1 
N

N 1 ci  A (z2)

N-  c + B. (A3)
i=i

Then (A2) and (A3) imply

2
max{c2/N: liN} + 0. (A4)

From (2.4) and the definition (2.2), it follows that

lim max sup Ici(a)-vi1/(l+c 0 1+Ici1) =OD(1). (A5)
+ 0 l<i<N la-a 0 1C

Further, by normality of {vi ,

max{Ivi /N /2 :Ii<N} 0. (A6)

Lemma Al It follows that

max (Ici(a 0 ) - ci~a 0 )I: l'i<N} 0. (A7)
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Proof of Lemma Al Make the definitionM

Hi(u,a) = u - c. - v. - a{G(xu) - i

so that

Hic(ci(),} = 0.

The partial derivatives of Ti are

2q(D1 Hi(u,a) =- Hi(u,a) = i + a
a

2H(u,)= -L Hi(u,a) = - {G( U) - YI + cur(cu){l-G(cu)}

By the chain rule,

^ 1 2( ) - Di i c a , -H {c (O)t, nA1i-c i i "

By (A4), (A6), (%7) and (A), it follows that for every M1O,

N-/2 max sup I - (a)Il~i4N le-[CM/N 1/2 ITT c i al

= 0Pli(N la-a 0 1M/N 1/2 1C( )I/N' 1 2} c o.

This means that for every M>0,

max sup Ic(c) - c (a0)I + 0, (Ag)
1'i4N Ia-a 0 1,'MN /2 ci

which by (A3) completes the proof of Lemma Al.
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The term on the left side of (2.6) ran be written as

A1N + A2N + A3 , where

Ai1N N' fc .(a 0) - i (CI0 , (-{C -C C i

A2N = N0 c0)ci(%)} - 0ii

1=l

A2N 1 N - I  ci(a0l)'G{%~ci(aO)} - *~~ia)]

i.=1

A N- L ( G c (a )}- (a
A3N c=1i 0 0i 0

By (2.5), A3N = 0 and, since G is hounded, (A7) qives

A 1N .

Because G and its derivative are hounded, Lemma Al says that

A2N 0

as long as

1N 2

N -  I {ci(a 0)9
2 = p(1),

i=l

which follows from (A3) - (A). This proves (2.6).

Note that in (2.6) we are essentially statinq that we can

replace a by a0 in (2.5) as long as we replace "=" to " -

"0 .
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This crLcial sti;titut ion is trtie in fiirlv m-neral

circumstances. It -Ioes not follow fron-, ordinary likelihood

calculations hocaus,?, in the ftinctif)nal case, the nw'mber of

parameters increa3e3 with the samole size.



T able 1

Usual Drobit Prrors-in-Variables

Reqression Probit Regression

Intercept Slone Intercept qlooe

(= -1.0) (=I.0) (= - 1.0) (=i.0)

Mean -0.963 0.663 -1.011 1.070

Mean Square Error 0.0136 0.142 0.0155 0.1i0

Minimum -1.246 0.324 -1.371 0.454

Maximu1 -0.625 1.208 -0.663 2.368

Interquartile 0.148 0.244 0.174 0.403

Range

-. A
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Fig. 1 Average risk for simulation data.

I.
A

I



C)

u-
x

CC

E- C) U

w U

-iLu JL

I- C,

iI W



28

E'iq. 2. AVretaqe MSE f()r 5-;ilAtior) 1-ita.



XL 0

U 0 -

~crccw V)
0 > co

US LUi Z -

IL N4 -mCI) 0)*l

aE r it

Cc C)- cr
cnc - -j a:0 > x cc LJ u (

z z LLJ0 u IJC)Z
C3CL U

C)LU

ii t.

U- -i
LI)~~cr 0- wI 0 ) ) )

C; CD) (Y) M4 Q: .

o1 0! 0L 0 0 0 0

o: 0L 0L 00

r- 14ce
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Fiq. 4. Frardnnqham datai kiks ixf i variances.
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